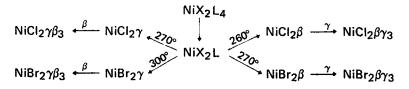
# CHARACTERIZATION OF SOME MIXED COMPLEX COMBINATIONS OF Ni(II) WITH PICOLINES FROM THERMOGRAVIMETRIC DATA

## N. Hurduc and L. Odochian

DEPARTMENT OF PHYSICAL CHEMISTRY, POLYTECHNIC INSTITUTE, IASSY, ROMANIA


(Received November 23, 1982; in revised form April 22, 1983)

New mixed complex combinations of Ni(II) with  $\gamma$  and  $\beta$ -picoline were synthesized and characterized by means of thermogravimetry under dynamic temperature conditions. The formation of these complex combinations was confirmed, the structure-thermostability dependence was established, and a mechanism for the thermal degradation was proposed.

In previous papers [1-3] the thermal behaviour of some complex combinations of the type NiX<sub>2</sub>L<sub>4</sub>, where X denotes CI or Br and L =  $\gamma$  or  $\beta$ -picoline, was studied under dynamic temperature conditions. The decomposition was found to proceed stepwise, which suggested the possibility of preparing complex combinations of Ni(11) with both  $\gamma$ - and  $\beta$ -picoline.

#### Experimental

Complexes of the types NiX<sub>2</sub> $\beta$  and NiX<sub>2</sub> $\gamma$  were separated thermally and new complexes were synthesized by treating them with  $\gamma$ - and  $\beta$ -picoline, respectively. The separating temperatures, depending on the natures of X and L, were established from the thermogravimetric data. The synthesis procedure and the temperatures for the complex separations are given in the following scheme:



The complex NiX<sub>2</sub>L<sub>4</sub> was submitted to dynamic heating at 10 deg/min until the formation temperature of NiX<sub>2</sub>L was reached. The separating complex was treated with a picoline excess. The complexation with  $\gamma$ -picoline was performed by stirring for 30 minutes at room temperature. The complexation with  $\beta$ -picoline takes place

J. Thermal Anal. 28, 1983

under heating. The complex + picoline mixture was heated for 30 minutes in a flask provided with a reflux condenser. The complexes were separated by filtration and then washed with ethyl alcohol and ether.

Four mixed Ni-picoline complexes were synthesized and characterized by thermogravimetry. The analyses were performed on a MOM-Budapest derivatograph with recording of the weight losses (TG), the derivative (DTG), the differential thermal analysis (DTA) and the temperature increases (T). The thermal curves were recorded in air at a heating rate of 10 deg/min. In order to obtain comparable data, the same sensitivities for TG (10 mg), DTG (1/10) and DTA (1/10) and sample weight of about 100 mg were maintained.

### **Results and discussion**

The thermal curves were recorded under the above conditions for the mixed complex combination and for the parent complexes of Ni(11) with  $\gamma$ -picoline and  $\beta$ -picoline, respectively.

The DTG and TG curves of NiCl<sub>2</sub> $\gamma_3\beta$  and NiCl<sub>2</sub> $\gamma_4$  are depicted in Fig. 1.

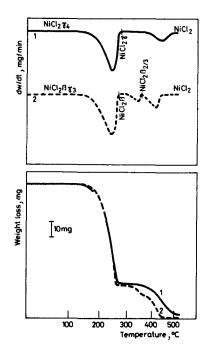



Fig. 1 DTG and TG curves of NiCl<sub>2</sub> $\gamma_4$  (1) and NiCl<sub>2</sub> $\gamma_3\beta$  (2)

J. Thermal Anal. 28, 1983

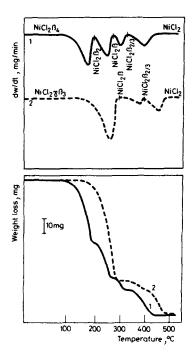



Fig. 2 DTG and TG curves of NiCl<sub>2</sub> $\beta_4$  (1) and NiCl<sub>2</sub> $\gamma\beta_3$  (2)

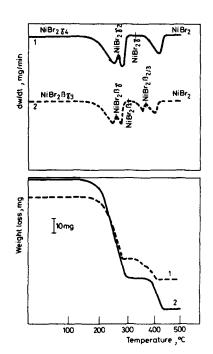



Fig. 3 DTG and TG curves of NiBr<sub>2</sub> $\gamma_4$  (1) and NiBr<sub>2</sub> $\beta\gamma_3$  (2)

The differences in thermal behaviour suggest the presence of  $\beta$ -picoline in the structure. The first degradation stage is identical for the two complexes, and is followed by a new stage for NiCl<sub>2</sub> $\gamma_4$  and by two stages for NiCl<sub>2</sub> $\gamma_3\beta$ . These stages are characteristic of the thermal degradation of the complex combinations of the type NiCl<sub>2</sub> $\beta$ .

The complex NiCl<sub>2</sub> $\gamma\beta_3$  differs from NiCl<sub>2</sub> $\beta_4$  by superimposition of the first two stages in the case of the mixed combination; this suggests the presence of  $\gamma$ -picoline in the molecule (Fig. 2).

Similar results were obtained for the mixed combinations containing bromine. In the case of the complex NiBr<sub>2</sub> $\beta\gamma_3$ , the appearance of the stages specific for the thermal degradation of NiBr<sub>2</sub> $\beta$  confirms the existence of this new compound (Fig. 3).

The complexes NiBr<sub>2</sub> $\beta_4$  and NiBr<sub>2</sub> $\gamma\beta_3$  differ in the shapes of the DTG and TG curves, which confirms the composition modifications of the molecule, that is the presence of  $\gamma$ -picoline (Fig. 4).

The thermogravimetric characteristics are listed in Table 1.

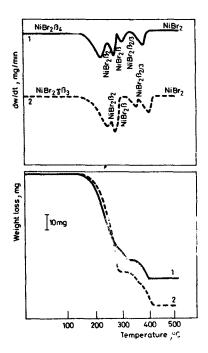



Fig. 4 DTG and TG curves of NiBr\_{2}\beta\_{4} (1) and NiBr\_{2}\gamma\beta\_{3} (2)

Table 1 Thermogravimetric characteristics of the complex combinations

| NiX <sub>2</sub> L <sub>4</sub>   | W, %                     |       |        |       |         |       |          |       |         |       |
|-----------------------------------|--------------------------|-------|--------|-------|---------|-------|----------|-------|---------|-------|
|                                   | Overall weight<br>losses |       | step l |       | step [] |       | step III |       | step IV |       |
|                                   | calc.                    | found | calc.  | found | calc.   | found | calc.    | found | calc.   | found |
| NiCl <sub>2</sub> β <sub>4</sub>  | 74.30                    | 73.38 | 37.13  | 34.68 | 18.58   | 19.35 | 6.19     | 6.45  | 12.38   | 12.90 |
| NICI274                           | 74.30                    | 72.36 | 55.73  | 54.47 | 18.58   | 17.88 | _        |       | -       | -     |
| NiCl <sub>2</sub> βy <sub>3</sub> | 74.30                    | 73.77 | 55.73  | 55.32 | 6.19    | 6.14  | 12.38    | 12,29 | _       | _     |
| NiCl <sub>2</sub> γβ <sub>3</sub> | 74.30                    | 73.57 | 55.73  | 55.28 | 6.19    | 6.09  | 12.38    | 12.19 | -       | -     |
| NiBr <sub>2</sub> β <sub>4</sub>  | 63.01                    | 60.00 | 31.48  | 30.00 | 15.75   | 14.16 | 5.24     | 5.41  | 10.50   | 10.41 |
| $NiBr_2\gamma_4$                  | 63.01                    | 62.50 | 31.48  | 31.25 | 15.75   | 15.27 | 15.75    | 15.28 | —       |       |
| NiBr <sub>2</sub> $\beta\gamma_3$ | 63.01                    | 59.37 | 31.48  | 29.69 | 15.75   | 14.58 | 5.24     | 4.68  | 10.50   | 10.41 |
| NiBr <sub>2</sub> $\gamma\beta_3$ | 63.01                    | 62.50 | 31.48  | 31.25 | 15.75   | 15.28 | 5.24     | 5.55  | 10.50   | 10.42 |

The overall weight losses, as well as those observed for individual decomposition stages, confirm the existence of the mixed complex combinations and suggest the following thermal degradation mechanism:

$$\begin{split} \text{NiCl}_{2}\beta_{4} & \longrightarrow \text{NiCl}_{2}\beta_{2} & \longrightarrow \text{NiCl}_{2}\beta & \longrightarrow \text{NiCl}_{2}\beta_{2/3} & \longrightarrow \text{NiCl}_{2} \\ \text{NiCl}_{2}\gamma_{4} & \longrightarrow \text{NiCl}_{2}\gamma & \longrightarrow \text{NiCl}_{2} \\ \text{NiCl}_{2}\beta\gamma_{3} & \longrightarrow \text{NiCl}_{2}\beta & \longrightarrow \text{NiCl}_{2}\beta_{2/3} & \longrightarrow \text{NiCl}_{2} \\ \text{NiCl}_{2}\beta\gamma_{3} & \longrightarrow \text{NiCl}_{2}\beta & \longrightarrow \text{NiCl}_{2}\beta_{2/3} & \longrightarrow \text{NiCl}_{2} \\ \text{NiBr}_{2}\beta_{4} & \longrightarrow \text{NiBr}_{2}\beta_{2} & \longrightarrow \text{NiBr}_{2}\beta & \longrightarrow \text{NiBr}_{2}\beta_{2/3} & \longrightarrow \text{NiBr}_{2} \\ \text{NiBr}_{2}\gamma_{4} & \longrightarrow \text{NiBr}_{2}\gamma_{2} & \longrightarrow \text{NiBr}_{2}\gamma & \longrightarrow \text{NiBr}_{2} \\ \text{NiBr}_{2}\beta\gamma_{3} & \longrightarrow \text{NiBr}_{2}\beta\gamma & \longrightarrow \text{NiBr}_{2}\beta & \longrightarrow \text{NiBr}_{2}\beta_{2/3} & \longrightarrow \text{NiBr}_{2} \\ \text{NiBr}_{2}\gamma\beta_{3} & \longrightarrow \text{NiBr}_{2}\beta_{2} & \longrightarrow \text{NiBr}_{2}\beta & \longrightarrow \text{NiBr}_{2}\beta_{2/3} & \longrightarrow \text{NiBr}_{2} \\ \end{array}$$

In order to establish the structure-thermostability dependence, the energy of activation was estimated by means of the Freeman-Carroll [4] differential method (Table 2).

| NUNZ I                            | Energy of activation, kJ/mol |         |          |         |  |  |  |  |  |
|-----------------------------------|------------------------------|---------|----------|---------|--|--|--|--|--|
| NiX <sub>2</sub> L <sub>4</sub>   | step I                       | step 11 | step III | step IV |  |  |  |  |  |
| NiCl <sub>2</sub> β <sub>4</sub>  | 76                           | 148     | 225      | 178     |  |  |  |  |  |
| NICI274                           | 70                           | 172     | -        |         |  |  |  |  |  |
| NICI2BY3                          | 88                           | 287     | 191      | -       |  |  |  |  |  |
| ΝίCΙ2βαγ                          | 87                           | 370     | 231      |         |  |  |  |  |  |
| NiBr <sub>2</sub> β <sub>4</sub>  | 87                           | 294     | 383      | 266     |  |  |  |  |  |
| NiBr <sub>2</sub> Y <sub>4</sub>  | 84                           | 191     | 159      |         |  |  |  |  |  |
| NiBr $_2\gamma\beta_3$            | 80                           | 478     | -        | 357     |  |  |  |  |  |
| NiBr <sub>2</sub> βy <sub>3</sub> | 96                           | 382     | 151      | 410     |  |  |  |  |  |

Table 2 Energies of activation of the decomposition steps

The energies of activation for low conversion degrees indicate an increased thermostability of the mixed complex combinations in comparison with the parent  $NiX_2L_4$ complexes. A significant increase in the activation energies of the intermediates is also observed.

The application of thermogravimetry under dynamic temperature conditions allowed the synthesis of new complex combinations, as well as the establishment of the structure-thermostability dependence.

#### References

- 1 N. Hurduc, L. Odochian, I. A. Schneider and E. Segal, Rev. Roum. Chim., 11 (1966) 1453.
- 2 N. Hurduc, L. Odochian, E. Segal and I. A. Schneider, Z. Phys. Chem., 90 (1968) 237.
- 3 N. Hurduc, L. Odochian and I. A. Schneider, J. Thermal Anal., 6 (1974) 17.
- 4 E. S. Freeman and B. Carroll, J. Phys. Chem., 62 (1958) 394.

**Zusammenfassung** – Neue gemischte Komplexkombinationen von Ni(II) mit  $\gamma$ - und  $\beta$ -Picolin wurden synthesisiert und thermogravimetrisch charakterisiert. Die Bildung dieser Komplexe wurde nachgewiesen, die Abhängigkeit zwischen Struktur und Thermostabilität ermittelt und ein Mechanismus für den thermischen Abbau vorgeschlagen.

Резюме — Синтезированы и термогравиметрически охарактеризованы в условиях динамической температуры новые смещанные комплексы двухвалентного никеля с γ- и β-пиколином. Подтверждено образование этих комбинированных комплексов, установлена зависимость термоустойчивости их от структуры и предложен механизм термического разложения.

16